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a b s t r a c t

A mild and efficient synthesis of 2-bromoindoles by ligand-free CuI-catalyzed intramolecular cross-cou-
pling of gem-dibromoolefins was developed. Reactions were carried out in toluene at room temperature
and the corresponding 2-bromoindoles were obtained in excellent yields.

� 2010 Elsevier Ltd. All rights reserved.
Table 1
Intramolecular coupling reaction of dibromoolefinsa

NHMs
N
Ms

Br
CuI, Base

Solvent

1a 2a

Br

Br

Entry Catalyst Base Solvent T (�C) Yieldb (%)

1 CuI K3PO4 THF 80 68
2 CuI K3PO4 Toluene 80 73
3 CuI K3PO4 DMF 80 48
4 CuI K3PO4 CH3CN 80 45
5 CuI K2CO3 Toluene 80 41
6 CuI Cs2CO3 Toluene 80 33
7 CuI TEA Toluene 80 49
8 CuI K3PO4 Toluene 80 51c

9 CuI/DMEDA K3PO4 Toluene 80 64
10 CuI K3PO4 Toluene 25 90
11 CuBr K3PO4 Toluene 25 42
12 CuCl K3PO4 Toluene 25 34
13 K3PO4 Toluene 25 0

a Reaction conditions: 1a (1.0 mmol), base (2.0 mmol) and CuI (0.1 mmol) in
Halogenated indoles are valuable synthetic intermediates as
well as important motifs in many biologically active molecules.1,2

A number of methods have been developed for their syntheses.3

Among these transformations, the treatment of the parent indoles
with an electrophilic halogen source is the most straightforward
strategy. Halogens,3e,h N-halosuccinimides,3c,d,f phosphoryl ha-
lides/imidazole,3b,i and copper (II) halides3a,g are commonly used
agents for the halogenation of indoles. 3-Halogenated indoles can
be easily obtained as the halogenation of indoles normally takes
place preferentially at the 3-position.3e In contrast, 2-halogenated
indoles are less accessible by these methods. The preparation of
2-halogenated indoles usually requires lithiation with strong bases
such as t-butyllithium followed by treatment of halogenating elec-
trophiles.3e These harsh conditions limit its synthetic application
due to the poor regioselectivity and poor functional group compat-
ibility. Therefore, there is a need to develop a mild and practical
method for the formation of 2-halogenanted indoles.

Gem-dibromoolefins have been found to be versatile intermedi-
ates for various transformations, and great effort has been made
on their synthetic applications.4 For instance, amides,4d,5d yamide-
s,4a ketene N,N-acetals,4b 2-substitute benzofused heterocycles,
4c,e–n,5b,h and other important classes of compounds4c,5a have been
efficiently synthesized from gem-dihaloolefins. However, to the best
of our knowledge, there is no example of constructing indoles from
gem-dihaloolefins under ligand-free copper catalysis conditions.6 In
our continuous studies of 1,1-dibromoolefins,5 we found that
2-bromoindoles can be readily prepared in an intramolecular
coupling manner. Herein, we describe a mild, efficient, and practical
method for the synthesis of 2-bromoindoles from N-protected
ortho-(gem-dibromovinyl)aniline under copper-catalyzed condi-
tions in the absence of ligands.
ll rights reserved.
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In the preliminary experiments, treatment of N-[2-(2,2-dib-
romoethenyl)phenyl]methanesulfonamide (1a)7 with catalytic
amount of CuI was tested to screen the reaction conditions, and
the results are summarized in Table 1.

Initially, the reaction of 1a with CuI was conducted under Lau-
tens’s conditions4c (Table 1, entry 1), and 2a was obtained in 68%
solvent (5 mL) at N2 atmosphere for 8 h. TEA = triethylamine, DMF = N,N-dimeth-
ylformamide, DMEDA = N,N0-dimethylethylenediamine.

b Isolated yields.
c 24 h.
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Table 3
CuI catalyzed synthesis of 2-bromo indolesa,8

NHMs
R

R
N
Ms

Br
CuI (10%)
K3PO4 (2eq)

Toluene, RT
1 2

Br

Br

Entry Substrate Product Yieldb (%)

1
NHMs

Br

Br

1a 

N
Ms

Br

2a 

90

2
NHMs

Br

Br

Cl
1g 

N
Ms

Br
Cl
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3
NHMs

Br

Br
Cl
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N
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Br
Cl
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Br
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Br

Br
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Br
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Br
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Br
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yield. After various bases and solvents were tested, K3PO4 and tol-
uene were found to be the most efficient combination. When the
temperature was lowered to 25 �C, the yield was significantly im-
proved (Table 1, entry 10), and the addition of a ligand like DMEDA
(Table 1, entry 9) was not necessary. Other readily available Cu(I)
halides are less efficient in catalyzing the reaction (Table 1, entries
11 and 12). We then screened different protecting groups of the
aniline, and the results are summarized in Table 2. Methanesulfo-
nyl was found to be the most suitable protecting group for the
transformation possibly due to the coordinating ability of the
internal sulfonamide and relatively easy deprotonation of ‘NH’ by
a base (Table 2, entry 1).

On the basis of these findings, a wide variety of 2-bromoindoles
were prepared in excellent yields from N-methanesulfonyl pro-
tected 2-(gem-dibromovinyl)anilines under the optimized condi-
tions: CuI as the catalyst, K3PO4 as the base, and toluene as the
solvent at room temperature. The results are summarized in Table 3.

Gem-dibromoolefins with both the electron-donating (Table 3,
entries 7–9, 12) and the electron-withdrawing substitutions (Table
3, entries 10 and 11) on the aromatic ring afforded the cyclized
products in excellent yields. Substitutions next to gem-dibromo-
olefin moiety (Table 3, entry 4) or next to N-Ms group (Table 3, en-
try 12) did not impact the reaction either. Halogen substitutes on
the aromatic ring were also well tolerated, giving polyhalogenated
indoles. It thus provides an attractive route for further transforma-
tion of 2-bromoindoles into natural and unnatural products with
indole moieties (Table 3, entries 2–6).9

Since suitable ortho substitutes have been shown to promote
Ullmann-type couplings,10 a possible mechanism for the formation
of 2-bromoindoles is proposed in Scheme 1. Sulfonamide 1 reacts
with CuI in the presence of base K3PO4 to form intermediate I.
The ‘Cu’ atom in intermediate I is coordinated with the sulfon-
amide N and O atoms. Then intramolecular oxidative insertion of
the coordinated copper to the dibromoolefin group provides II,
which then undergoes reductive elimination to give the target
product 2.

In summary, we have developed a practical and efficient meth-
od for the synthesis of 2-bromoindoles. The CuI catalyzed intramo-
lecular cross-coupling reactions proceed smoothly at room
temperature without the addition of ligands. The desired 2-brom-
oindoles are obtained in excellent yields. This method provides a
facile construction of 2-bromoindoles under mild conditions from
N-[2-(2,2-dibromoethenyl)phenyl]methanesulfonamides.
Table 2
Screening of N-protecting groupsa

NHR
N
R

Br
CuI, Base

Solvent

1 2

Br

Br

Entry Substrate/R Product/yieldb (%)

1 1a/mesyl 2a/90
2 1b/p-toluenesulfonyl 2b/88
3 1c/acetyl 2c/n.d.c

4 1d/trifluoroacetyl 2d/n.d.c

5 1e/benzoyl 2e/trace (40d)
6 1f/ethyloxycarbonyl 2f/n.d.c

a Reaction conditions: 1 (1.0 mmol), K3PO4 (2.0 mmol) and CuI (0.1 mmol) in
toluene (5.0 mL) at room temperature for 8 h.

b Isolated yield.
c No desired products.
d 80 �C.
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11
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N
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12 NHMs Br

Br

1q 
N
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Br
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a Reaction conditions: 5 (1.0 mmol), K3PO4 (2.0 mmol) and CuI (0.1 mmol) in
toluene (5.0 mL) at room temperature for 8 h.

b Isolated yield.
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Scheme 1. A proposed mechanism for the copper catalyzed formation of 2-
bromoindoles.
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